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THERMAL DEFORMATION OF UNEVENLY HEATED JET HEAT EXCHANGERS 

S. B. Koshelev, V. V. Kharitonov, and G. E. Ter-Avakimov UDC 532.525.6+536.24 

Expressions are obtained for evaluating stresses and strains in an unevenly 
heated jet heat exchanger having the form of a metallic disk with a cellular 
structure. 

Jet heat exchangers are widely used in different areas of technology [1-3]. Such heat 
exchangers may be significantly deformed at high thermal loads and temperature gradients, 
and their structural materials may experience intolerably high thermal stresses. The goal 
of the present study is to evaluate thermal stresses and strains in jet heat exchangers hav- 
ing the form of a metal disk of thickness H and diameter 2b with a cellular structure (Fig. 
i) in the case of nonuniform axisymmetric heating. The cellular structure makes it possible 
to intensify heat transfer due to the finning effect and retains the bending stiffness of 
the exchanger. 

Formulation of the Problem. The exact simultaneous solution of the differential equations 
of heat conduction (second order) and thermoelasticity (fourth order) is possible only in 
certain simple cases [4, 5]. Thus, various approximations of the theory of thermoelasticity 
are used in engineering calculations [4-7]. Below we represent the resulting strain m(r) 
of the heated surface (z = H/2) approximately in the form of the sum of the thermal expansion 
~expn(r) (thickening) of the heat exchanger along the z axis and the bending of its middle 
plane (z = 0), mbnd(r). We will evaluate the bending by using an approximation of plate 
theory for a plate with properties which vary through the thickness [5]: the radial coeffi- 
cient of thermal expansion 8r(Z) and the modulus of elasticity Er(z). 

According to [4, 5], the so-called thermal force and thermal moment are sources of bend- 
ing stresses and strains: 

l H/2 
N t (l') = 1"--''"--~" ,I Or (Z) E r (Z) T (r, z) dz, 

--HI2 

I ~/~ 
M t (r) = - ~  S [~ (z) E~ (z) T (r, z) zdz, 

l - - v  - n / 2  

(1) 

which are determined by the temperature field T(r, z) in the metal. Henceforth, the tempera- 
ture is reckoned from the temperature of the fluid at the inlet of the heat exchanger (Tin = 0). 

After fourfold integration of the equation of thermoelasticity of circular plates [4, 
5] over the radius, we obtain 
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zI:  i 
~-- Fig. i. Diagram of jet heat exchanger and 
~ i . ~  axial temperature field in it. 

-7/" 

F (r) dr -{- • I - -  (2)  tt~bnd(r) := + b r 2 b~ ' 

r I-I/2 

where F(r)= rMt(r)dr; D= Er(z)z2dz i s  t h e  bend ing  s t i f f n e s s  o f  t h e  h e a t  e x c h a n g e r ;  

0 

t h e  c o e f f i c i e n t  K = -1  f o r  a h e a t  e x c h a n g e r  f a s t e n e d  abou t  i t s  c o n t o u r ,  w h i l e  .< = (1 - v ) /  
(1 + ~) f o r  a h e a t  e x c h a n g e r  which  i s  n o t  f a s t e n e d .  E q u a t i o n  (2)  g i v e s  f u n d a m e n t a l  s o l u -  
t i o n s  o f  t h e  t h e o r y  o f  t h e r m o e l a s t i c i t y  o f  p l a t e s  as  a s p e c i a l  c a s e  [4 ,  5 ] .  A p l a t e  r i g i d -  
l y  f a s t e n e d  a t  i t s  edges  does n o t  bend i f  t h e  t e m p e r a t u r e  o f  t h e  p l a t e  changes  o n l y  t h r o u g h  
t h e  t h i c k n e s s  [ t h e  t h e r m a l  moment in  (2)  i s  n o t  dependen t  on t h e  r a d i u s ]  ; a r i g i d l y  f a s t e n e d  
or  f r e e l y  s u p p o r t e d  p l a t e  does n o t  bend i f  i t s  t e m p e r a t u r e  changes  o n l y  ove r  t h e  r a d i u s  (Mr = 
0 ) ;  i f  t h e  t e m p e r a t u r e  changes  l i n e a r l y  t h r o u g h  t h e  t h i c k n e s s  o f  a f r e e l y  s u p p o r t e d  p l a t e ,  
t h e n  i t  bends so t h a t  t h e r e  a r e  no s t r e s s e s  in  i t .  E q u a t i o n s  (1)  and (2)  a r e  v a l i d  in  t h e  
c a s e  o f  a s l i g h t  n o n u n i f o r m i t y  o f  t h e  p l a t e  t h r o u g h  i t s  t h i c k n e s s .  The t h e r m a l  s t r e s s e s  a r e  
e a s i l y  e v a l u a t e d  in  t h e  u n i f o r m  h e a t i n g  o f  a h e a t  e x c h a n g e r  which  i s  n o t  f a s t e n e d  a t  i t s  
c o n t o u r  [4] : 

Or,.= ~3rErT(z) ~_ Nt 12Mt (3)  
l--v H + H - - - - g - z "  

The normal expansion (thickening) of the heat exchanger is of the following order of 
magnitude: 

~/e 

(%xpn(r)~x$ ] ~z(z) T(r, z) dz, (4)  

where t h e  c o e f f i c i e n t  < 2 may change  f rom 1 ( a t  low s t r e s s e s )  t o  (1 + v ) / ( 1  - v) ( a t  h i g h  
c o m p r e s s i v e  s t r e s s e s ) .  Thus,  t o  c a l c u l a t e  t h e  t h e r m a l  s t r e s s e s  and s t r a i n s ,  i t  i s  n e c e s s a r y  
t o  know t h e  t w o - d i m e n s i o n a l  t e m p e r a t u r e  f i e l d  in  t h e  s t r u c t u r a l  m a t e r i a l  o f  a j e t  h e a t  ex-  
c hange r  and i t s  m e c h a n i c a l  p r o p e r t i e s .  

M e c h a n i c a l  P r o p e r t i e s .  The h e a t  e x c h a n g e r  shown in  F i g .  1 i s  a t w o - l a y e r  p l a t e  c o n s i s t -  
ing  o f  a s o l i d  l a y e r  and a p e r f o r a t e d  l a y e r  made of  t h e  same m a t e r i a l .  I n  t h i s  c a s e ,  t h e  
c o e f f i c i e n t s  o f  t h e r m a l  e x p a n s i o n  o f  b o t h  l a y e r s  a r e  t h e  same in  b o t h  t h e  r a d i a l  and a x i a l  
d i r e c t i o n s  and a r e  e q u a l  t o  t h e  t a b u l a t e d  v a l u e  ~ = ~r = ~z. The Y o u n g ' s  modul i  Er and Ez 
o f  t h e  p e r f o r a t e d  l a y e r  d i f f e r  from t h e  t a b u l a t e d  v a l u e  o f  E: Ez = (1 - H)E, Er = (1 - d / s ) E  
[ 8 ] .  Here t h e  c o e f f i c i e n t s  in p a r e n t h e s e s  a p p r o x i m a t e l y  a c c o u n t  f o r  t h e  r e d u c t i o n  in  t h e  
e l a s t i c  modulus in  p r o p o r t i o n  t o  t h e  r e l a t i v e  a r e a  ove r  which  t h e  f o r c e s  a r e  t r a n s m i t t e d  in  
t h e  a x i a l  and r a d i a l  d i r e c t i o n s ,  r e s p e c t i v e l y .  I n  sum, t h e  s t i f f n e s s  o f  t h e  h e a t  e x c h a n g e r  
i s  e q u a l  t o  

D - :  D0~(Y, d/s); r --- (1 --d/s)  + (d/s) y(3 - -  6y + 4~2), (5)  

where Do = EHS/12(1 - v2) i s  t h e  s t i f f n e s s  o f  t h e  s o l i d  p l a t e  when d / s  o r  ~ = 1; ~ i s  t h e  
s t i f f n e s s  r e d u c t i o n  f a c t o r  and i s  dependen t  on t h e  r e l a t i v e  s p a c i n g  o f  t h e  p e r f o r a t i o n s  s / d  
and t h e  r e l a t i v e  t h i c k n e s s  o f  t h e  h e a t e d  w a l l  ~ = h/H. I t  f o l l o w s  f rom (5)  t h a t  r = 1 - d / s  
a t 7  < 0 . 1 .  

Tempe r a tu r e  F i e l d .  F i r s t  we f i n d  t h e  t e m p e r a t u r e  f i e l d  in  t h e  c a s e  o f  u n i f o r m  h e a t i n g  
(a = b) o f  t h e  e n t i r e  s u r f a c e  z = H/2 by a h e a t  f low w i t h  t h e  d e n s i t y  q,  W/m 2. I g n o r i n g  t h e  
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radial nonuniformity of the temperature of the metal, we can assume the temperature field 
to be linear within a heated wall having the thickness h (Fig. i) and also within the zone 
of action of the heat-transfer agent (-H/2 <_ z < H/2 - h). Here, we can ignore the heating 
of the heat-transfer agent relative to the temperature head within individual cells. The 
temperature of the metal will change exponentially with depth due to volumetric cooling, in 
accordance with the model of a heat exchanger in a porous body [9]. Assuming that the lower 
surface z = -H/2 is thermally insulated, we finally obtain the following expression for the 
unidimensional (averaged over the radius of the heat exchanger) temperature field in the metal 

{ 7"~ + z + h H H H 

T(z) .... (6) 
T ~ c h (  z-+-H/2 ) / o h (  H .... h )  at H : ,:. H - . - ~ -  ~.~ z - ~ -  - -  h, 

where Ta = q / a  i s  t h e  t e m p e r a t u r e  o f  t h e  s u r f a c e  of  t h e  h e a t - e x c h a n g e r  w a l l  u n d e r g o i n g  c o o l -  
ing (see Fig. i); ~ = ~(I - ~)~a v is the effective heat-transfer coefficient; 6 = ~'i - ~)~/~v 
is the characteristic depth of heating of the perforated layer. 

If the rate of volumetric cooling of the perforated layer is so great that 6 << H -h 
then, in accordance with (6), the temperature of the lower surface (z = -H/2)is nearly the 
same as the temperature of the fluid. 

In the case of nonuniform heating of the heat exchangers, when the heat flux changes 
according to a certain law q(r) in the radial direction, the temperature of the metal changes 
both through the thickness and over the radius of the heat exchanger. It was shown in [I0] 
that radial flows of heat from the heated region are small if the size of this region is 
greater than the thickness h of the wall undergoing rapid cooling. Also, in accordance with 
(i) and (2), the bending of the heat exchanger does not depend directly on the temperature 
field but rather indirectly, through integrals of temperature over the thickness and radius. 
These facts make it possible to use a simplified relation T(z, r) in the form (6) as the first 
approximation without a large error. Meanwhile, the radial change in temperature fully re- 
peats the profile of the thermal load q(r). 

Deformation of the Heat Exchanger. In accordance with Eq. (6), the relation T(z, r) 
and the thermal force and moment (i), being functions of the radius, change similarly to 
q(r). Insertion of (6) into (i), with allowance for the difference in elastic moduli in the 
layers, yields 

l---v ( l---d/s _[_ I~ . h s "~ (7) 

1 [.__..ff__ M t V  .... qH2 %cPJ -~- tL~..~ -t- 9~'1,. (8) 

where qq= (1 - -  d ) [  (I - -  2Y) t h s  --H--h6 H26 (1 .... I/ch H - 6  h ) ] . q~ ,  ::=: 1 - -  ? ; ~  =: 1 - -  2W3. I f  t h e  

w a l l  o f  t h e  h e a t  exchange r  i s  t h i n  (X = h/H << 1) and t h e  r a t e  o f  v o l u m e t r i c  c o o l i n g  i s  h i g h  
(6 << H), t h e n  ~ 2 ~ 3 ~ } ,  ~1~ 1 - d / s ,  and t h e  e x p r e s s i o n s  in  p a r e n t h e s e s  in  Eqs. (7) and 
(8)  n e a r l y  c o i n c i d e .  The f i r s t  t e rms  in  p a r e n t h e s e s  in  Eqs. (7) and (8) c h a r a c t e r i z e  t h e  
c o n t r i b u t i o n  of  t h e  h e a t - e x c h a n g e r  volume u n d e r g o i n g  c o o l i n g  to  t h e  t h e r m a l  f o r c e  and moment, 
w h i l e  t h e  second and t h i r d  t e rms  c h a r a c t e r i z e  t h e  c o n t r i b u t i o n  o f  t h e  h e a t e d  w a l l .  

Le t  us f u r t h e r  examine t h e  n o n u n i f o r m  h e a t i n g  of  t h e  w a l l  by a u n i f o r m  h e a t  f low q = 
Q/~a 2 w i t h i n  a c i r c u l a r  s p o t  o f  r a d i u s  a < b. We f i n d  t h e  f o l l o w i n g  from (4) and (6) f o r  
r<a: 

-gS T . (9) 

The first term in the right side characterizes the thermal expansion of the cooling part of 
the heat exchangers, while the second and third terms characterize the thermal expansion of 
the heated wall. It follows from Eq. (9) that with a specified thermal capacity Q, expan- 
sional strain increases with a decrease in the heated area ~a = . For a heat exchanger with 
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Fig. 2. Experimental dependence of the effective heat- 
transfer coefficient ~ [W/(m2.K)] (a) and the volumetric 
heat-transfer coefficient av [W/(m3"K)] (b) on the Rey- 
nolds number (for the nozzle) in copper water-cooled 
heat exchangers with the geometric parameters shown in the 
table. 

TABLE i. Geometric Dimensions of Heat Exchanger 

No. of Inside diam, I Inside diam. 
working of cel l  d, mm of nozzle d n, 
section m i l l  

1,5 
7,5 
3 
3 

15 

0,7 
3 
1,5 
1,5 
6,5 

Distance from 
nozzle to bot- 
tom of cell. 

m m  

1,1 
1 
1,5 
1,5 
6,5 

Porosity of 
heat ex- 
changer 17 

0,43 
0,81 
0,13 
0,38 
0,78 

a thin wall (h § 0), the strain is inversely proportional to the volumetric heat transfer 
and is independent of the dimensions of the heat exchanger. In the case of a thick wall, 
its expansion, proportional to the square of the thickness h =, is decisive in the total expan- 
sion of the heat exchanger. 

From (2), (5), (6), and (8) we find the deflection ~bnd(0) of the heating surface 

3 ( I  + v )  ~Q ~1 -I- h(p~ + ~ - l n  ( 1 0 )  t%nd{O ) .... a2Mt (0) I +_______~x -}- In ~ " - -  . 
2D 2 ~ ~ H ~  , ~ ~ 2~ J 2 a 

With a specified capacity Q and cooling rate (i.e., ~v and ~), the bending strains, as the ex- 
pansion (9), increases with an increase in the thickness of the heated wall h. Thus, to re- 
duce the strain, it is necessary to reduce the thickness of the wall (to values roughly equal 
to the diameter d of the cooling channel). The term in the square brackets in Eq. (i0) char- 
acterizes the effect of the nonuniformity of the heating. At a < b and a specified capacity 
Q, bending of the heat exchanger increases logarithmically with a decrease in the size of 
the heated region. The least bending will occur with uniform heating, when a = b. If we 
fix the heat flux q in the heated spot rather than the total capacity Q, then in accordance 
with Eq. (i0) an increase in the radius of the heated spot will - in contrast to the regime 
Q = const - be accompanied either by a monotonic increase in the bending of the heat exchanger 
to a maximum at ~ = b in the case of unfastened edges or a passage through a maximum at a/b = 
I/~e = 0.607 in the case of fastened edges (~ = -i). We should note that by knowing the form 
of the function mbnd(r) in the heating of a circular region, it is easy to construct a solu- 
tion by the superposition method for cases of heating of annular regions (see Appendix). Sum- 
ming the expansional and bending strains and limiting the resulting strain to a certain maximum 
permissible value mpr, we obtain the maximum permissible (with respect to strain) capacity 
of an unsecured heat exchanger for uniform heating: 

. h-' o,,, (.A_ j. _t 

where fi =~i/~ + (l/3)(H/b) 2, i = 1, 2, 3. 

(zz) 
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Fig. 3. Effect of the radius b (mm) of a water-cooled jet 
heat exchanger on its thermal capacity Q (W) with a limita- 
tion on strains to i pm (i-4) or on stresses to 65 MPa (5) 
with d = 3 mm, h = 5 mm, ~ = 0.i, Re = 104 . Calculation 
with Eqs. (ii) and (12) at H = 20 mm for structural materi- 
als Cu (i), (5), Mo (2), SiC (3), and Cu at H = b (4). 

Fig. 4. Effect of the thickness of the wall h (mm) on the 
thermal capacity Qm (W) of a water-cooled jet heat exchanger 
made of copper, with limitation of the strain to 1 pm at 
b = 30 mm, H = 20 mm, ~ = 0.4, and Re = 104 . Calculation 
with Eq. (ii) at d = 1.5 mm (i) and h = d (2). 

Insertion of the expressions for the thermal force (7) and moment (8) into Eq. (3) gives 
an expression for the thermal capacity of the heat exchangers which is the maximum allowable 
with regard to the stresses on the surface z = H/2 

Qo (1--V)r / ( 1--h/H -I h(1--h/214) @ ) 
- I~E j , o~ " ~, o % H  ' (12) 

where Opr = Orr = o~,~ is the maximum permissible compressive stress of the material of the 
heat-exchanger wall. 

Heat Transfer. In accordance with Eqs. (9)-(12), the thermoelastic stresses and strains 
in the jet heat exchanger are directly dependent on the heat-transfer coefficients ~ and 
~v. There are no theoretical recommendations for determining them. We therefore determined 
them experimentally on copper specimens with different dimensions (Table i) and using differ- 
ent water flow rates (Fig. 2). Here we employed the method in [3]. As can be seen (Fig. 
2a), the effective heat-transfer coefficient of a finned wall cooled by jets of finite dimen- 
sions increases with an increase in water flow rate and a decrease in cell diameter, reaching 
(2-3).105 W/(m2.K) at d = 1.5 mm and Re = 105 without boiling of the water. The volumetric 

heat transfer ~v = 4E~f/d, dependent on the cell diameter d and the mean heat-transfer coef- 
ficient =f on the lateral surface of the fins (the walls of the cell), reached (3-4).10 7 W/ 
(m3.K) (section No. 4, Fig. 2b). The error of measurement of ~ is 15%, while the error of 
measurement of volumetric heat transfer is 20%. 

Figures 3 and 4 show numerical estimates of the permissible capacities for heat exchangers 
unsecured at their contour in the case of uniform heating (a = b). Here we used experimental 
values of the heat-transfer coefficient. The value of Qo - b 2, while Qw is slightly depend- 
end on the radius at b/H > 2. Meanwhile, bending strains predominate in this region of b/H. 
To increase the permissibTe (with respect to strains) thermal capacity, the radius of the 
heat exchanger must be increased simultaneously with its thickness H. 

A second important reserve for increasing the tolerable thermal load Qm is reducing the 
thickness of the wall of the heat exchanger h. It follows from Fig. 4 that a decrease in 
h from 7 and 1 n~n, with retention of a constant cell diameter d = 1.5 mm and constant heat- 
exchanger dimensions, leads to a ninefold increase in the allowable thermal load. A simul- 
taneous decrease in the thickness of the wall and the size of the cooling cell d leads to 
an even greater increase in Q (see Fig. 4). This is due to the fact that a decrease in the 
diameter of the coolzng cells zs accompanied by an increase in the total cooling surface and 
the heat-transfer coefficients ~v and ~ (see Fig. 2). The use of a structural material with 
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a high thermal conductivity and low coefficient of thermal expansion also leads to an increase 
in capacity Qm. Thus, the use of molybdenum increases Q~ by a factor of 1.5, while the use 
of SiC increases it by a factor of 2-2.5 relative to a similar heat exchanger made of copper 
(see Fig. 3) (the properties of the materials were taken from [7]). 

APPENDIX 

If the thermal load on the wall of the heat exchanger is confined in an annular region 
with an inside radius c and an outside radius a > c, if the thermal load is uniform within 
this ring and equal to q, and if q = 0 outside the ring (r < c, a < r < b), then in the absence 
of radial heat flows the thermal moment (i) repeats the profile of the-thermal load and is 
determined by Eq. (8) at c i r ! a. Outside the ring, Mt = 0. Then from (2) we obtain 

(A.I) 
I V--~l-~-~ln . . . . .  ~ l l n  + •  1 - -  b~ at r ~ c ,  

4D r 2 1 b ~  { r 2 ~  
O).bnd(r) = {~ -- + ~ t l n - - - - ~ l l n - - - + •  1--  at c ~ r ~ a ,  

b--V / ) b~M.t r~ b~ " 

( t - -~ l )  ln---F-• 1 - - - ~ .  ] [  at a.~.~.~r~%b. 
(A.3) 

(A.2) 

Here D = a2/b2; q = c2/b 2. 

In particular, when c = 0, the thermal load decreases on a circular region. When c = 
0 and a = b, the thermal load is uniformly distributed over the surface of the wall. Let 
us compare two limiting cases: i) heating in a circle (c = 0) and 2) heating in a ring (b 
= a, c > 0) and find the strains at characteristic points. 

The deformation on the axis r = 0 is 

4D 
0) 1 

b2Mt 

4D 
(0 2 - -  

b~-Mt 

The deformation on the boundary of the heated 

4D 

b=Mt 
The deformat ion on the  boundaries  of the  

4D 1 
r = c  c o 2 - - = l ~ l n  

b2-Mt 

4D 
r==a co 2 - -  ~In---- 

b'~M t 

! 
- ~t In----'-- q. (1 + • ~t, 

~lln l - i - + ( 1  +~) (1- -~0 .  

spot r = a is 

I 
+ ~ t [ l + x ( 1 - - ~ ) l .  

heated ring is 

I 
- -  ~1 In + ( ~ - -  ~)[1 + •  --~)], 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

1 I ~ l n - - -  + • (A.8) 

It follows from a comparison of (A.4) and (A.5) that a heat exchanger fastened at its edges 
(K = -i) is bent (bulges) counter to the heat flow if the heating region is a circular spot, 
while the middle of the heat exchanger sags (~ < 0) if the heating region is a ring. 
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IDENTIFICATION OF THE CHARACTERISTICS OF SURFACE THERMAL INTERACTION 

BETWEEN MATERIALS AND GAS STREAMS 

E. A. Artyukhin and A. V. Nenarokomov UDC 536.24 

The authors analyze the possible identification of the functional parameters in 
the energy balance equation on the disintegrating surface of a solid. 

Mathematical modeling of processes of thermal interaction of disintegrating structural 
and heat shield materials with high enthalpy gas streams must be based, in general, on solv- 
ing the coupled problems of unsteady heat and mass transfer. Problems of this class are 
formulated in the form of a single system of equations describing the whole complex of inter- 
connected processes: the gas flow in the inviscid region; the heat and mass transfer in the 
high-temperature boundary layer in the presence of blowing and chemical reactions in multi- 
component gas mixtures; and surface disintegration and heat transfer within the material. 

Solution of the coupled heat- and mass-transfer problems in the full formulation is a 
complex problem, and one that is difficult to solve at present. Therefore, one must con- 
struct simplified mathematical models which describe approximately the complex processes 
under examination. And here one must include the basic factors influencing thermal interac- 
tion of the material with the gas stream [i, 2]. 

Approximate mathematical models usually contain a number of effective values of charac- 
teristics, each of which takes account of a certain set of individual phenomena and processes. 
Methods of parametric identification of inverse heat-transfer problems [3] have recently found 
widespread use in determining these characteristics. 

In this paper we analyze the inverse problem of recovering the characteristics of surface 
thermal interaction of a disintegrating material with a high enthalpy gas stream. Here we 
assume that the heat-transfer process within the material is described by the homogeneous 
heat-conduction equation, one-dimensional in a space coordinate, with coefficients that are 
functions of temperature. In addition, it is assumed that the disintegration and removal 
of material occurs only in the gas phase. This corresponds to the mechanism of thermochemic- 
al disintegration of the surface of subliming materials. In the more general case, e.g., 
for composite materials, other factors [i, 2] must be accounted for. 

With these assumptions the approximate mathematical model of the process of heat and 
mass transfer occurring in a certain time interval (0, ~m] in the gas-solid system, allowing 
for disintegration of the material on the wetted surface, can be represented in the form of 
the following heat-conduction boundary problem: 
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